Search results for " Neural stem cell"

showing 9 items of 9 documents

Taking Advantage of Nature’s Gift: Can Endogenous Neural Stem Cells Improve Myelin Regeneration?

2016

Irreversible functional deficits in multiple sclerosis (MS) are directly correlated to axonal damage and loss. Neurodegeneration results from immune-mediated destruction of myelin sheaths and subsequent axonal demyelination. Importantly, oligodendrocytes, the myelinating glial cells of the central nervous system, can be replaced to some extent to generate new myelin sheaths. This endogenous regeneration capacity has so far mainly been attributed to the activation and recruitment of resident oligodendroglial precursor cells. As this self-repair process is limited and increasingly fails while MS progresses, much interest has evolved regarding the development of remyelination-promoting strateg…

0301 basic medicineCell typeMultiple Sclerosisgliaadult neural stem cellsoligodendrocytesReviewBiologyRegenerative MedicineCatalysisInorganic ChemistryWhite matterlcsh:Chemistry03 medical and health sciencesMyelin0302 clinical medicineNeural Stem CellsmedicineAnimalsHumansPhysical and Theoretical ChemistryRemyelinationMolecular Biologylcsh:QH301-705.5SpectroscopyMyelin SheathMultiple sclerosisRegeneration (biology)Organic ChemistryEndogenous regenerationGeneral Medicinedifferentiationmedicine.diseaseNeural stem cellComputer Science ApplicationsNerve Regeneration030104 developmental biologymedicine.anatomical_structureremyelinationlcsh:Biology (General)lcsh:QD1-999nervous systemprecursor cellsImmunologyNeurosciencecell fate determinationwhite matter030217 neurology & neurosurgeryInternational Journal of Molecular Sciences
researchProduct

Stable and Efficient Genetic Modification of Cells in the Adult Mouse V-SVZ for the Analysis of Neural Stem Cell Autonomous and Non-autonomous Effects

2016

Relatively quiescent somatic stem cells support life-long cell renewal in most adult tissues. Neural stem cells in the adult mammalian brain are restricted to two specific neurogenic niches: the subgranular zone of the dentate gyrus in the hippocampus and the ventricular-subventricular zone (V-SVZ; also called subependymal zone or SEZ) in the walls of the lateral ventricles. The development of in vivo gene transfer strategies for adult stem cell populations (i.e. those of the mammalian brain) resulting in long-term expression of desired transgenes in the stem cells and their derived progeny is a crucial tool in current biomedical and biotechnological research. Here, a direct in vivo method …

0301 basic medicineEpendymal CellNeurogenesisGeneral Chemical EngineeringGenetic VectorsStem cellsBiologyTransfectionGeneral Biochemistry Genetics and Molecular BiologySubgranular zoneMice03 medical and health sciencesSubependymal zoneNeural Stem CellsEpendymal cellEpendymaLateral VentriclesDevelopmental biologyNichemedicineSubependymal zoneAnimalsNeurogeneticsGeneral Immunology and MicrobiologyLateral ventricleGeneral NeuroscienceLentivirusNeurogenesisGene Transfer TechniquesBrainNeural stem cellCell biology030104 developmental biologymedicine.anatomical_structureVentricular-subventricular zonenervous systemNeural stem cellIssue 108NeurogenèticaStem cellCèl·lules mareDevelopmental biology; Ependymal cell; Issue 108; Lateral ventricle; Lentivirus; Neural stem cell; Neurogenesis; Niche; Subependymal zone; Ventricular-subventricular zone; Animals; Brain; Ependyma; Lateral Ventricles; Lentivirus; Mice; Neural Stem Cells; Transfection; Gene Transfer Techniques; Genetic VectorsDevelopmental biologyNeuroscienceAdult stem cellJournal of Visualized Experiments
researchProduct

Subventricular zone neural progenitors protect striatal neurons from glutamatergic excitotoxicity.

2012

The functional significance of adult neural stem and progenitor cells in hippocampal-dependent learning and memory has been well documented. Although adult neural stem and progenitor cells in the subventricular zone are known to migrate to, maintain and reorganize the olfactory bulb, it is less clear whether they are functionally required for other processes. Using a conditional transgenic mouse model, selective ablation of adult neural stem and progenitor cells in the subventricular zone induced a dramatic increase in morbidity and mortality of central nervous system disorders characterized by excitotoxicity-induced cell death accompanied by reactive inflammation, such as 4-aminopyridine-i…

LipopolysaccharidesPolyunsaturated AlkamidesSubventricular zoneGlutamic AcidMice TransgenicArachidonic AcidsBiologyAmidohydrolasesGlutamatergicMiceNeural Stem CellsLateral VentriclesmedicineAnimalsDronabinolProgenitor cell4-Aminopyridineneurogenesis; ischaemia; neural stem cells; excitotoxicity; endocannabinoidsGanciclovirEpilepsyStem CellsNeurogenesisExcitatory Postsynaptic PotentialsNeural stem cellCorpus StriatumNeuroepithelial cellMice Inbred C57BLStrokeneurogenesisDisease Models Animalmedicine.anatomical_structureNeuroprotective AgentsBenzamidesSettore MED/26 - NeurologiaNeurology (clinical)ischaemiaCarbamatesStem cellNeuroscienceexcitotoxicityExcitatory Amino Acid AntagonistsAdult stem cellEndocannabinoidsBrain : a journal of neurology
researchProduct

Neural stem cell lineage-specific cannabinoid type-1 receptor regulates neurogenesis and plasticity in the adult mouse hippocampus

2018

Abstract Neural stem cells (NSCs) in the adult mouse hippocampus occur in a specific neurogenic niche, where a multitude of extracellular signaling molecules converges to regulate NSC proliferation as well as fate and functional integration. However, the underlying mechanisms how NSCs react to extrinsic signals and convert them to intracellular responses still remains elusive. NSCs contain a functional endocannabinoid system, including the cannabinoid type-1 receptor (CB1). To decipher whether CB1 regulates adult neurogenesis directly or indirectly in vivo, we performed NSC-specific conditional inactivation of CB1 by using triple-transgenic mice. Here, we show that lack of CB1 in NSCs is su…

Male0301 basic medicineCell signalingCannabinoid receptorNeurogenesisCognitive NeuroscienceLong-Term PotentiationMice Transgenicmouse hippocampus ; neural stem cells ; neurogenesis-dependent behavior ; CB1 ; adult neurogenesisHippocampal formationBiologyHippocampus03 medical and health sciencesCellular and Molecular Neurosciencemouse hippocampus0302 clinical medicineNeural Stem CellsReceptor Cannabinoid CB1Animalsreproductive and urinary physiologySpatial MemoryBehavior AnimalNeurogenesisLong-term potentiationOriginal ArticlesCB1Endocannabinoid systemneurogenesis-dependent behaviorNeural stem cellCell biologyadult neurogenesisMice Inbred C57BL030104 developmental biologynervous systemlipids (amino acids peptides and proteins)biological phenomena cell phenomena and immunityStem cell030217 neurology & neurosurgeryCerebral Cortex
researchProduct

Olfactory bulbectomy, but not odor conditioned aversion, induces the differentiation of immature neurons in the adult rat piriform cortex.

2011

International audience; The piriform cortex layer II of young-adult rats presents a population of prenatally generated cells, which express immature neuronal markers, such as the polysialylated form of the neural cell adhesion molecule (PSA-NCAM) or doublecortin (DCX), and display structural characteristics of immature neurons. The number of PSA-NCAM/DCX expressing cells in this region decreases markedly as age progresses, suggesting that these cells differentiate or die. Since the piriform cortex receives a major input from the olfactory bulb and participates in olfactory information processing, it is possible that the immature neurons in layer II are affected by manipulations of the olfac…

MaleMESH: Cell DifferentiationMESH: Neural Stem CellsMESH: Olfactory BulbDoublecortin ProteinMESH: RatsNeurogenesisMESH : MaleMESH : Neurogenesis[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionMESH : Rats WistarNeural Stem CellsPiriform cortexAnimalsMESH: AnimalsRats WistarOlfactory memoryMESH : Olfactory BulbbiologyMESH : Olfactory PathwaysMESH : RatsGeneral NeuroscienceNeurogenesisCell DifferentiationOlfactory PathwaysMESH: Rats WistarOlfactory BulbMESH: MaleRatsOlfactory bulbDoublecortinMESH: Neurogenesisnervous systemMESH : Neural Stem Cellsbiology.proteinNeural cell adhesion moleculeOlfactory ensheathing gliaMESH : AnimalsNeuNNeuroscienceMESH : Cell Differentiation[SDV.AEN]Life Sciences [q-bio]/Food and NutritionMESH: Olfactory Pathways
researchProduct

Drug connectivity mapping and functional analysis reveal therapeutic small molecules that differentially modulate myelination

2022

Disruption or loss of oligodendrocytes (OLs) and myelin has devastating effects on CNS function and integrity, which occur in diverse neurological disorders, including Multiple Sclerosis (MS), Alzheimer’s disease and neuropsychiatric disorders. Hence, there is a need to develop new therapies that promote oligodendrocyte regeneration and myelin repair. A promising approach is drug repurposing, but most agents have potentially contrasting biological actions depending on the cellular context and their dose-dependent effects on intracellular pathways. Here, we have used a combined systems biology and neurobiological approach to identify compounds that exert positive and negative effects on olig…

MyelinMiceMyelin SheathNSC Neural stem cellSystems BiologyOPC Oligodendrocyte progenitor cellHigh-Throughput Nucleotide SequencingLINCS The Library of Integrated Network-based Cellular SignaturesCell DifferentiationGeneral MedicineCNS Central Nervous SystemOligodendrogliamedicine.anatomical_structureOligodendrogenesisNFOL Newly formed oligodendrocyteOL OligodendrocyteSignal TransductionSubventricular zoneOptic nerveIn silicoSystems biologyMorpholinesSVZ subventricular zoneContext (language use)RM1-950BiologyArticlemedicinePharmacogenomics The Library of Integrated Network-Based Cellular Signatures/LINCSAnimalsH-LY29 High concentration of LY294002Computer SimulationPI3K/AKT/mTOR pathwayL-LY29 Low concentration of LY294002PharmacologyPI3K/AktTCN TriciribineDose-Response Relationship DrugRegeneration (biology)Multiple sclerosismedicine.diseaseOligodendrocyteOligodendrocyteiNSCs iPSC-derived NSCsTAPs Transiently amplifying progenitorsMice Inbred C57BLMS Multiple SclerosisiPCS induced Pluripotent Stem CellChromonesPharmacogeneticsTherapeutics. PharmacologyMOL Myelinating oligodendrocyteNeuroscienceBiomedicine & Pharmacotherapy
researchProduct

Retrograde monosynaptic tracing reveals the temporal evolution of inputs onto new neurons in the adult dentate gyrus and olfactory bulb

2013

Identifying the connectome of adult-generated neurons is essential for understanding how the preexisting circuitry is refined by neurogenesis. Changes in the pattern of connectivity are likely to control the differentiation process of newly generated neurons and exert an important influence on their unique capacity to contribute to information processing. Using a monosynaptic rabies virus-based tracing technique, we studied the evolving presynaptic connectivity of adult-generated neurons in the dentate gyrus (DG) of the hippocampus and olfactory bulb (OB) during the first weeks of their life. In both neurogenic zones, adult-generated neurons first receive local connections from multiple typ…

NeuronsMultidisciplinaryDentate gyrusNeurogenesisMice TransgenicBiologyEntorhinal cortexAdult Neurogenesis ; Synaptic Tracing ; Adult Neural Stem Cell ; Functional Integration ; PseudotransductionOlfactory BulbAnterior olfactory nucleusOlfactory bulbGlutamatergicMicenervous systemPNAS PlusRabies virusPiriform cortexDentate GyrusSynapsesConnectomeAnimalsNeuroscience
researchProduct

Vascular Senescence: A Potential Bridge Between Physiological Aging and Neurogenic Decline

2021

The adult mammalian brain contains distinct neurogenic niches harboring populations of neural stem cells (NSCs) with the capacity to sustain the generation of specific subtypes of neurons during the lifetime. However, their ability to produce new progeny declines with age. The microenvironment of these specialized niches provides multiple cellular and molecular signals that condition NSC behavior and potential. Among the different niche components, vasculature has gained increasing interest over the years due to its undeniable role in NSC regulation and its therapeutic potential for neurogenesis enhancement. NSCs are uniquely positioned to receive both locally secreted factors and adhesion-…

ParabiosisGeneral NeuroscienceNicheNeurogenesisneurogenic nicheNeurosciences. Biological psychiatry. NeuropsychiatryReviewBiologyadult neural stem cellNeural stem cellPhysiological AgingBridge (graph theory)senescence-associated secretory phenotypeAging brainparabiosisHeterochronyNeuroscienceNeuroscienceendothelial cell senescenceRC321-571Frontiers in Neuroscience
researchProduct

Sustained activation of mTOR pathway in embryonic neural stem cells leads to development of tuberous sclerosis complex-associated lesions

2011

SummaryTuberous Sclerosis Complex (TSC) is a multisystem genetic disorder characterized by hamartomatous neurological lesions that exhibit abnormal cell proliferation and differentiation. Hyperactivation of mTOR pathway by mutations in either the Tsc1 or Tsc2 gene underlies TSC pathogenesis, but involvement of specific neural cell populations in the formation of TSC-associated neurological lesions remains unclear. We deleted Tsc1 in Emx1-expressing embryonic telencephalic neural stem cells (NSCs) and found that mutant mice faithfully recapitulated TSC neuropathological lesions, such as cortical lamination defects and subependymal nodules (SENs). These alterations were caused by enhanced gen…

Telencephaloncongenital hereditary and neonatal diseases and abnormalitiesCellular differentiationNeuroepithelial CellsEmbryonic DevelopmentBiologyTuberous Sclerosis Complex 1 Proteinmurine modelCerebral VentriclesMiceNeural Stem CellsCell MovementTuberous SclerosismedicineGeneticsAnimalsAnimals; Animals Newborn; Cell Differentiation; Cell Movement; Cell Proliferation; Cerebral Ventricles; Embryonic Development; Embryonic Stem Cells; Epilepsy; Gene Silencing; Gene Targeting; Megalencephaly; Mice; Mutation; Neural Stem Cells; Neuroepithelial Cells; Neurons; TOR Serine-Threonine Kinases; Telencephalon; Tuberous Sclerosis; Tuberous Sclerosis Complex 1 Protein; Tumor Suppressor Proteins; Signal TransductionGene SilencingNeural cellPI3K/AKT/mTOR pathwayEmbryonic Stem CellsCell ProliferationNeuronsEpilepsymTOR; Neural Stem Cells; Tuberous Sclerosis; murine modelTOR Serine-Threonine KinasesTumor Suppressor ProteinsCell DifferentiationCell BiologyNewbornEmbryonic stem cellNeural stem cellMegalencephalyCell biologynervous system diseasesNeuroepithelial cellmedicine.anatomical_structureAnimals NewbornImmunologyGene TargetingMutationmTORMolecular MedicineTSC1TSC2Signal Transduction
researchProduct